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The ultimate purpose of the present article is to theoretically estimate the cyclic shear strength coefficient
and the cyclic shear strain hardening exponent. For this purpose, the relationship between axial and
torsional cyclic parameters is addressed in light of the von-Mises criterion. Material data for 15 kinds of
material have been taken from the technical literature to check the accuracy and reliability of the developed
correlations. Maximum differences of 18.6 and 27.7% were observed for theoretical versus experimental
results for the cyclic shear strength coefficient and the cyclic shear strain hardening exponent, respectively.
Experimental verifications show that the devised relationship can describe the cyclic shear stress-strain
curves well. The characteristic of the theoretical approach is simple and easy to use. In addition, the
theoretical results can be further applied to examine the correctness of the test data.
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1. Introduction

Fatigue analysis is very important in the design of mechan-
ical structures and components. Fatigue properties of materials
are essential for fatigue analysis. It is well known that the cyclic
shear strength coefficient and the cyclic shear strain hardening
exponent are two basic mechanical behavior performance
parameters. When the fatigue properties of materials are being
evaluated (Ref 1-3), it is necessary to know these two material
constants. Even though these fatigue performance parameters
can be determined experimentally, they are often calculated
theoretically because comprehensive test data are not usually
available. If reliable correlations with reasonable accuracy can
be established, durability performance predictions and/or opti-
mization analyses can be performed, while substantially reduc-
ing time and cost associated with material fatigue testing.

In general, the axial and torsional cyclic stress-strain curves
can be expressed by the Ramberg-Osgood forms:

For uniaxial loading

De
2
¼ Dr

2E
þ Dr

2K 0

� �1=n0

ðEq 1Þ

For torsional loading

Dc
2
¼ Ds

2G
þ Ds

2K 0o

� �1=n0o

; ðEq 2Þ

where Dr and Ds are the axial cyclic stress range and
the cyclic shear stress range, respectively; De and Dc are the

axial cyclic strain range and the shear cyclic strain range,
respectively; K¢ and K 0o are the cyclic strength coefficient and
the cyclic shear strength coefficient, respectively; n¢ and n0o
are the cyclic strain hardening exponent and the cyclic shear
strain hardening exponent, respectively. E is the Young�s
modulus and G is the shear modulus.

As for the cyclic strength exponent and the cyclic strain
hardening exponent, there are some methods have been
developed to estimate these two cyclic parameters such as the
method proposed by Zhang et al. (Ref 4). If a reliable
relationship between the axial and torsional cyclic parameters
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Nomenclature

E Young�s modulus

G shear modulus

w reduction in area (%)

Poisson�s ratio
De strain range in axial fatigue test

Dr stress range in axial fatigue test

Dc shear strain range in torsional fatigue test

Ds shear stress range in torsional fatigue test

r0f axial fatigue strength coefficient

e0f axial fatigue ductility coefficient

b axial fatigue strength exponent

c axial fatigue ductility exponent

s0f shear fatigue strength coefficient

c0f shear fatigue ductility coefficient

bo shear fatigue strength exponent

co shear fatigue ductility exponent

K¢ cyclic strength coefficient

n¢ cyclic strain hardening exponent

K 0o cyclic shear strength coefficient

n0o cyclic shear strain hardening exponent

Subscript

t the theoretical value
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can be established, the two cyclic shear parameters can be
estimated by using the cyclic axial ones. Therefore, in the
present study, a simple relationship between the axial and
torsional cyclic parameters is addressed in light of the von-
Mises criterion. Experimental verifications by using 15 differ-
ent materials show that the developed relationship can describe
the cyclic shear stress-strain curves well.

2. Correlations Among Axial and Torsional
Cyclic Parameters

The relationship between the applied strain amplitude and
fatigue life under uniaxial loading and torsional loading can be
expressed by Manson-Coffin equations: For uniaxial loading

De
2
¼ r0f

E
2Nfð Þbþe0f 2Nfð Þc ðEq 3Þ

For torsional loading

Dc
2
¼ s0f

G
2Nfð Þboþc0f 2Nfð Þco ðEq 4Þ

The material constants r0f ; e0f are the axial fatigue strength
and ductility coefficient, respectively. b and c represent the
axial fatigue strength and ductility exponent, respectively.
The material constants, s0f and c0f ; are the shear fatigue
strength and ductility coefficient, respectively. bo and co rep-
resent the shear fatigue strength and ductility exponent,
respectively. The strain amplitudes of Eq 3 and 4 can be
split into elastic and plastic components, and they can be
individually related to life by equating to the first and second
terms, respectively, on the right. Thus, Eq 3 and 4 can be
rewritten as

Dee
2
¼ r0f

E
2Nfð Þb ðEq 5Þ

Dep
2
¼ e0f 2Nfð Þc ðEq 6Þ

and

Dce
2
¼ s0f

G
2Nfð Þbo ðEq 7Þ

Dcp
2
¼ c0f 2Nfð Þco ðEq 8Þ

Similar to Eq 3 and 4, the strain amplitudes of Eq 1 and 2
can be split into elastic and plastic components as well. Thus,
Eq 1 and 2 can be rewritten as

Dr=2 ¼ EDee=2 ðEq 9Þ

Dr=2 ¼ K 0 Dep=2
� �n0 ðEq 10Þ

and

Ds=2 ¼ GDce=2 ðEq 11Þ

Ds=2 ¼ K 0o Dcp=2
� �n0o ðEq 12Þ

Combining Eq 5, 6, 9, and 10, it can be obtained that

EDee=2� K 0 Dep=2
� �n0¼ 0 ðEq 13Þ

EDee=2� r0f=e
0 b=c
f

� �
Dep=2
� �b=c¼ 0 ðEq 14Þ

Combining Eq 13 and 14, it can be obtained that

n0 ¼ b=c ðEq 15Þ

K 0 ¼ r0f=e
0 b=c
f ðEq 16Þ

Similarly, the cyclic shear strength coefficient and cyclic
shear strain hardening exponent can be expressed by

n0o ¼ bo=co ðEq 17Þ

K 0o ¼ s0f=c
0 bo=co
f ðEq 18Þ

In Ref (5), the equivalent stress (req) and strain (eeq) are
defined by

req ¼ 3=2sijsij
� �1=2 ðEq 19Þ

eeq ¼ 2=3eeije
e
ij

� �1=2
þ 2=3epije

p
ij

� �1=2
; ðEq 20Þ

where sij, eij, and epij are the deviatoric stress sij ¼
�

rij � rkkdij=3Þ; the elastic deviatoric strain eeij ¼ eeij�
�

eekkdij=3Þ and the plastic strain, respectively, and repeated
indices imply summation over 1-3. dij is the Kronecker d. It
is obtained that req ¼ r; eeq ¼ 2 1þ mð Þee=3þ ep for uniax-
ial loading (ee is the elastic strain and ep is the plastic strain),

and req ¼
ffiffiffi
3
p

s; eeq ¼ c=
ffiffiffi
3
p

for torsional loading. m is the
Poisson�s ratio.

In light of the equivalent strain defined by Eq 20, 5, and 6
can be written as

Deeq;e
2
¼ 2 1þ mð Þ

3

r0f
E

2Nfð Þb ðEq 21Þ

Deeq;p
2
¼ e0f 2Nfð Þc ðEq 22Þ

In light of the effective strain amplitude (Eq 20), Eq 5 and 6
can be rewritten as

Deeq;e
2
¼ s0fffiffiffi

3
p

G
2Nfð Þbo ðEq 23Þ

Deeq;p
2
¼ c0fffiffiffi

3
p 2Nfð Þco ðEq 24Þ

The relationship between E and G can be expressed as

G ¼ E=2 1þ mð Þ ðEq 25Þ

Combining Eq 21-25, and it can be obtained that

s0f ¼ r0f=
ffiffiffi
3
p

ðEq 26Þ

c0f ¼
ffiffiffi
3
p

e0f ðEq 27Þ

bo ¼ b ðEq 28Þ

co ¼ c ðEq 29Þ

Substituting Eq 26-29 into Eq 17 and 18, it can be obtained
as

n0o ¼ n0 ðEq 30Þ
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K 0o ¼ 3�
1þn0
2 K 0 ðEq 31Þ

It is worth mentioning here that the derivation (Eq 30 and
31) takes as their starting point the assumption that the mate-
rial is isotropic. For anisotropic material such as textured
sheet or drawn wire, the derived relationship may fail since
the Young�s modulus, E, depends on sample orientation. As
many polycrystalline materials can be approximated as isotro-
pic, the derivation can be used for these materials.

3. Experimental verifications

To check the accuracy and reliability of Eq 30 and 31, 15
different materials are selected from the technical literature
(Ref 2, 5-10). The test data ðK 0o and n0oÞ are listed in Table 1
and 2. The results estimated by Eq 30 and 31 is tentatively
denoted as K 0o;t and n0o;t; respectively. The relative deviations

of them from the test ones are defined as dK 0o;t ¼ ðK 0o;t � K 0oÞ=
K 0o; dn0o;t ¼ n0o;t � n0o

� �
=n0o; respectively. The estimated shear

cyclic parameters ðK 0o;t and n0oÞ are compared with the exper-

imental ones in Fig. 1. In this figure, the dashed lines indicated
a factor of ±20% (in K 0o;t=K

0
o and n0o;t=n

0
oÞ scatter band. As can

be seen from Fig. 1(a) and (b), Eq 30 and 31 give good
estimation results for the investigated materials. In more

detail, results listed in tables show �18:3< dK 0o;t < 18:6% and

�20:4< dn0o;t < 27:7%: The absolute mean values dK 0o;t
		 		 and

dn0o;t
		 		 are 8.5 and 10.9%, respectively.

The cyclic shear strength coefficient and the cyclic shear
strain hardening exponent list in tables are used in Eq 30 and
31, to develop the theoretical and the experimental cyclic shear
stress-strain curves. These curves are shown in Fig. 2-5. In this
figure, ‘‘—’’ and ‘‘…’’ correspond to ðK 0o; n0oÞ and ðK 0o;t; n0o;tÞ;
respectively. These figures show that Eq 30 and 31 can be used
to estimate the cyclic shear strength coefficient and the cyclic
shear strain hardening exponent. In addition, based on Eq 12,
the following equation can be obtained:

log Ds=2ð Þ ¼ logK 0o þ n0o log Dcp=2
� �

ðEq 32Þ

It should be mentioned here that log K 0o > 0; while log (Dcp/
2)< 0 in Eq 32. That is to say, when the sign of the dK 0o;t is
positive, the sign of the dn0o;t should be also positive to esti-
mate the cyclic shear stress-strain curve well, and vice versa.
Therefore, the difference between the theoretical cyclic shear
stress-strain curve and the test curve not only depends on the
values of dK 0o;t and dn0o;t; but also on the sign. When the
signs are the same, the theoretical curves correlate well with
the experimental ones. However, when the signs are not the
same, the theoretical curves deviate greatly from the tested
ones. For material FeE 460 steel, the ðdK 0o;t; dn0o;tÞ are
(�18.3, 24.7), and for this material the signs is not the same.

Table 1 Theoretical prediction of the cyclic shear parameters (Ref 5)

Materials SNCM630 SNCM439 SCM440 S45C SCM435 SFNCM85S SF60 S25C

E, GPa 196 208 204 206 210 201 208 209
r0f ; MPa 1270 1380 1400 1400 1100 1040 978 821
e0f 1.54 1.89 0.675 0.449 0.996 0.316 0.187 0.216
b �0.0732 �0.0722 �0.0879 �0.107 �0.067 �0.0924 �0.082 �0.0961
c �0.823 �0.801 �0.650 �0.564 �0.708 �0.522 �0.439 �0.458
K¢, MPa 1060 1000 1040 1150 1070 1320 1350 1140
n¢ 0.054 0.066 0.094 0.152 0.089 0.180 0.186 0.210
K 0o; MPa 592 601 643 552 553 676 609 565
n0o 0.050 0.072 0.108 0.119 0.085 0.173 0.156 0.199
K 0o;t; MPa 594 557 570 611 588 690 704 586
dK 0o;t; % 0.34 �7.3 �11.3 10.7 6.3 2.0 15.6 3.7
n0o;t 0.054 0.066 0.094 0.152 0.089 0.180 0.186 0.21
dn0o;t; % 8.0 �8.3 �12.9 27.7 4.7 4.0 19.2 5.5

Table 2 Theoretical prediction of the cyclic shear parameters (Ref 2, 6-10)

Materials 40CrNiMoA AISI 304 Haynes 188 1045 HR Inc 718 AISI 316 FeE 460

E, GPa 208 183 170.2 202 209 192.7 206
r0f ; MPa 1081.6 1000 823 948 3950 1258.2 659.2
e0f 0.8312 0.171 0.489 0.26 1.50 0.121 0.5227
b �0.0777 �0.114 �0.082 �0.092 �0.151 �0.097 �0.0588
c �0.7320 �0.402 �0.73 �0.445 �0.761 �0.454 �0.5945
K¢, MPa 1073.7 1660 891 1258 1564 903.8 508
n¢ 0.103 0.287 0.113 0.208 0.0681 0.179 0.2161
K 0o; MPa 558.7 785 589 614 860 398.6 319
n0o 0.103 0.296 0.142 0.217 0.079 0.169 0.1733
K 0o;t; MPa 586 819 484 648 869.8 472.9 260.5
dK 0o;t; % 4.9 4.3 �17.8 5.5 1.1 18.6 �18.3
n0o;t 0.103 0.287 0.113 0.208 0.0681 0.179 0.2161
dn0o;t; % 0.0 �3.0 �20.4 4.8 �13.8 5.9 24.7
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As such, the corresponding theoretical curves deviate greatly
from the experimental one (Fig. 4).

The reasons why the FeE 460 steel behaves differently may
be that the ðK 0o; n0oÞ itself is an experimental result, and there
exists a difference between the test result and the theoretical
one. What�s more, the derivation based on the assumption that
the equality of the plastic and elastic components in both
Manson-Coffin equation and Ramberg-Osgood equation leads
to the compatibility condition. In other words, the derivation
assumed that the number of cycles to failure does not influence
the elastic-plastic properties of the material. Thus, it is assumed
that the material is stable during fatigue tests and does not
exhibit significant softening or hardening effects. However, the
FeE 460 steel exhibits significant cyclic softening character
under the cyclic loading (Ref 10). This character may result in
the deviation problem when the derived relationship is used to
describe the torsional cyclic stress-strain curve.
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Fig. 1 Comparison of the estimated and experimental cyclic shear
parameters (a) cyclic shear strength coefficient and (b) cyclic shear
strain hardening exponent
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Fig. 2 Cyclic shear stress-strain curves for (1) SNCM630 steel
(Ref 5), (2) SFNCM85S steel (Ref 5), (3) S45C steel (Ref 5), and
(4) S25C steel (Ref 5)
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Fig. 3 Cyclic shear stress-strain curves for (1) Inc 718 (Ref 9), (2)
SCM435 steel (Ref 5), (3) 1045 HR steel (Ref 9), and (4) AISI 316
(Ref 2)
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Fig. 4 Cyclic shear stress-strain curves for (1) SNCM439 steel
(Ref 5), (2) SF60 steel (Ref 5), (3) AISI 304 (Ref 6), and (4) FeE
460 steel (Ref 10)
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4. Conclusions

Material data for 15 kinds of material published in Ref (2,
6-10) were used to examine correlations between the axial
and torsional cyclic parameters. Based on the discussions in
the preceding sections, the following conclusions can be
drawn:

1. The cyclic shear strength coefficient is always less than
the cyclic strength coefficient.

2. The cyclic strength coefficient and the cyclic strain hard-
ening exponent can be used to estimate the cyclic shear

strength coefficient and the cyclic shear strain hardening
exponent. The expressions are as follows:

n0o ¼ n0

K 0o ¼ 3�
1þn0
2 K 0
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Fig. 5 Cyclic shear stress-strain curves for (1) SCM440 steel (Ref
5), (2) 40CrNiMoA steel (Ref 8), and (3) Haynes 188 (Ref 7)
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